Towards optimal kernel for connected vertex cover in planar graphs
نویسندگان
چکیده
We study the parameterized complexity of the connected version of the vertex cover problem, where the solution set has to induce a connected subgraph. Although this problem does not admit a polynomial kernel for general graphs (unless NP ⊆ coNP/poly), for planar graphs Guo and Niedermeier [ICALP’08] showed a kernel with at most 14k vertices, subsequently improved by Wang et al. [MFCS’11] to 4k. The constant 4 here is so small that a natural question arises: could it be already an optimal value for this problem? In this paper we answer this quesion in negative: we show a 11 3 k-vertex kernel for Connected Vertex Cover in planar graphs. We believe that this result will motivate further study in search for an optimal kernel.
منابع مشابه
A 9k Kernel for Nonseparating Independent Set in Planar Graphs
We study kernelization (a kind of efficient preprocessing) for NP-hard problems on planar graphs. Our main result is a kernel of size at most 9k vertices for the Planar Maximum Nonseparating Independent Set problem. A direct consequence of this result is that Planar Connected Vertex Cover has no kernel with at most (9/8 − ǫ)k vertices, for any ǫ > 0, assuming P 6= NP. We also show a very simple...
متن کاملPolynomial Kernels for Hard Problems on Disk Graphs
Kernelization is a powerful tool to obtain fixed-parameter tractable algorithms. Recent breakthroughs show that many graph problems admit small polynomial kernels when restricted to sparse graph classes such as planar graphs, bounded-genus graphs or H-minor-free graphs. We consider the intersection graphs of (unit) disks in the plane, which can be arbitrarily dense but do exhibit some geometric...
متن کاملKernelization Hardness of Connectivity Problems in d-Degenerate Graphs
A graph is d-degenerate if its every subgraph contains a vertex of degree at most d. For instance, planar graphs are 5-degenerate. Inspired by recent work by Philip, Raman and Sikdar, who have shown the existence of a polynomial kernel for DOMINATING SET in d-degenerate graphs, we investigate kernelization hardness of problems that include connectivity requirement in this class of graphs. Our m...
متن کاملOn the Complexity of Various Parameterizations of Common Induced Subgraph Isomorphism
Maximum Common Induced Subgraph (henceforth MCIS) is among the most studied classical NP-hard problems. MCIS remains NP-hard on many graph classes including bipartite graphs, planar graphs and k-trees. Little is known, however, about the parameterized complexity of the problem. When parameterized by the vertex cover number of the input graphs, the problem was recently shown to be fixed-paramete...
متن کاملOn Total Vertex Cover Problem in Subcubic Graphs
A total vertex cover is a vertex cover whose induced subgraph consists of a set of connected components, each of which contains at least two vertices. The total vertex cover (TVC) problem ask for the total vertex cover with minimum cardinality. In this paper, we first show that the TVC problem is NP-complete for connected subcubic grid graphs of arbitrary large girth. Next, we show that the TVC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 161 شماره
صفحات -
تاریخ انتشار 2013